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ABSTRACT: The growing availability of multiomic data provides a highly
comprehensive view of cellular processes at the levels of mRNA, proteins,
metabolites, and reaction fluxes. However, due to probabilistic interactions between
components depending on the environment and on the time course, casual,
sometimes rare interactions may cause important effects in the cellular physiology.
To date, interactions at the pathway level cannot be measured directly, and
methodologies to predict pathway cross-correlations from reaction fluxes are still
missing. Here, we develop a multiomic approach of flux-balance analysis combined
with Bayesian factor modeling with the aim of detecting pathway cross-correlations
and predicting metabolic pathway activation profiles. Starting from gene expression
profiles measured in various environmental conditions, we associate a flux rate
profile with each condition. We then infer pathway cross-correlations and identify
the degrees of pathway activation with respect to the conditions and time course
using Bayesian factor modeling. We test our framework on the most recent
metabolic reconstruction of Escherichia coli in both static and dynamic environments, thus predicting the functionality of
particular groups of reactions and how it varies over time. In a dynamic environment, our method can be readily used to
characterize the temporal progression of pathway activation in response to given stimuli.

KEYWORDS: multiomics, flux-balance analysis, Escherichia coli, Bayesian factor modeling, pathway correlation,
temporal pathway activation

The recent availability of high-throughput data regarding
multiple layers of biological organization (“omics”) allows

cellular processes to be mapped at the levels of mRNA,
proteins, and metabolites. Analogously, the growing number of
defined pathways, where reactions are classified into groups,
allows us to better understand the particular functionality
achieved by a series of reactions. To date, the study of
interactions between pathways taken as single entities has been
already applied to genes through gene expression analysis.1

Such interactions, also known as pathway cross-correlations, are
important to produce appropriate response to external stimuli
and are assumed to be the underlying mechanism describing
the response to dynamic environments. This suggests that
studying biological systems requires a holistic approach that
takes the concerted activities of molecules into account.2

Previous studies inferred cross-correlations from gene ex-
pression data3−5 and others from protein−protein networks.6

Another recent study applied a Bayesian network inference to
identify causal relationships among the most influential
reactions.7 However, methods to infer cross-correlations
between pathways from reaction fluxes, and therefore making
use of the metabolism and its reaction-pathway associations, are
still missing.
In the last 25 years, high-quality genome-scale reconstruc-

tions of metabolic networks have been combined with
constraint-based optimization in order to analyze micro-

organisms at steady state. To improve the predicting capability
of a metabolic model, one can include multiple “omic” layers,
such as gene expression, codon usage, protein abundance, and
the interaction between these layers. The interdependence
among gene expression levels, protein production, and growth
rate has been analyzed thoroughly by Scott et al.,8 highlighting
a linear relation between the RNA−protein ratio and the
growth rate of the bacterium. Other methodologies regarding
how to improve the model predictions by means of gene
expression have been recently proposed.9

Arguably, flux-balance analysis (FBA) is the most widely used
constraint-based technique to predict flux distributions and
network capabilities in large biochemical networks.10 FBA has
proved to be useful thanks to its ability to handle large
networks: it requires information about biochemical reactions
and stoichiometric coefficients, but it does not involve kinetic
parameters. This makes it well suited to studies that enumerate
and characterize perturbations such as different substrates or
genetic interventions (e.g., knockouts) leading to obligatory
coupling between the growth rate and the production of a
desired metabolite.11 Recently, more than 1000 prokaryotic
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genomes have been fully sequenced, thus allowing FBA models
to incorporate also information on enzymes and genome,
including the relationships among genes, proteins, and
reactions (GPR mapping). To date, more than 90 genome-
wide metabolic reconstructions have been published.12

In this study, we propose a methodology to predict the
cellular response to environmental conditions from a pathway-
based perspective. The classification of metabolic reactions into
pathways allows us to understand or predict the functionality of
particular groups of reactions under given growth conditions.
However, since the interactions at the pathway level cannot be
measured directly, we propose to apply a hierarchical Bayesian
framework, which supports latent variable models in order to
take pathway information into account.5 We focus on the
cellular activity of Escherichia coli on the genomic, fluxomic, and
pathway levels in different environmental settings by integrating
an augmented metabolic model with a machine learning
technique applied at the fluxomic level. Integrating a FBA

model and a Bayesian factor model leads to determining the
degree of metabolic pathway responsiveness and to detecting
pathway cross-correlations, starting from gene expression
profiles (Figure 1).
The aim of this article is to combine a Bayesian machine

learning technique and a multiomic flux model augmented with
gene expression profiles in order to integrate and analyze data
representing heterogeneous biological levels of organization.
Our method highlights complex interactions between compo-
nents of the model at different layers. We start with the
investigation of the genome-scale model by using metabolic flux
analysis in a bilevel setting, namely, the maximization of growth
rate and acetate production. Through a Bayesian factor
approach, we detect pathway cross-correlations that are
assumed to be a static, intrinsic property of E. coli underlying
its response behavior. Furthermore, we infer pathway activation
profiles as a bacterial response to an ensemble of environmental
conditions. Finally, we use time series of gene expression

Figure 1. Our modeling framework combines Bayesian machine learning and metabolic flux modeling to analyze metabolic pathways from gene
expression data. First, we propose an augmented FBA method (M1) to map gene expression data (A) on the metabolic network (B). The method
includes a bilevel maximization framework in the case study of biomass-acetate objective space, therefore producing optimal flux profiles in different
environmental conditions (C). Using a set of conditions with time-series gene expression profiles, we use our framework to elucidate the metabolism
dynamics, involving rearrangements in the objective space during growth (D). Finally, we perform Bayesian factor modeling (M2) on the reaction
flux distribution by taking predefined reaction-pathway memberships as prior knowledge. This enables us to infer the pathway responsiveness to each
environmental condition (E) and the cross-correlations between pathways (F), elucidating the underlying mechanisms of bacterial response to
dynamically changing environments.
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profiles combined with our hybrid approach in order to
investigate changing pathway responsiveness.

1. FLUX-BALANCE ANALYSIS WITH CONTINUOUS
GENE EXPRESSION

Flux-balance analysis (FBA) is a linear programming technique
that models the steady-state conditions in a chemical reaction
network.13 The combination of flux-balance constraints and
capacity constraints on the metabolic fluxes is a system of linear
homogeneous equations and inequalities; thus, its solution
space is a convex polyhedral cone representing the feasible flux
distributions. The flux-balance constraint is represented by the
equation dX/dt = Sv = 0, where X represents the vector of the
concentrations of all metabolites of the network, S is its
stoichiometric matrix, and v is the vector of flux rates. This
constraint can be thought of as Kirchoff’s laws applied to any
node representing a metabolite in the network. The flux
through a metabolite must be constant, namely, the input flux
equals the output flux. If one allows the concentrations of
metabolites to increase linearly, then the conditions become
dX/dt ≥ 0, which is equivalent to Sv ≥ 0. This approach
represents Von Neumann’s optimal growth scenario and may
be useful when one has to ensure that some metabolites are
available also outside of the chemical reaction network modeled
(e.g., when modeling only a compartment of a larger
organism14 or when applying external optimization algorithms
to maximize or minimize the metabolite concentration15).
To analyze the effects caused by the change of external media

and conditions in which an E. coli strain was grown, we map
each gene expression array (microarray profiles) to the acetate-
biomass space of objective functions. We take these two fluxes
as objectives because of the common assumption that
microorganisms tend to optimize their metabolic network in
order to maximize the growth rate, and possibly produce
additional chemicals, in order to cope with multiple, sometimes
conflicting, objectives to optimize simultaneously.16 As well as
being an important target for biotechnology, with multiple
industrial applications,17 acetate is central to many pathways in
both aerobic and anaerobic E. coli. Being an intermediate
metabolite, it is representative of processes not directly related
to growth and therefore it is highly indicative of metabolic
flexibility for possible reorganizations that need to be
performed during adaptations to environmental changes.
When acetate is present at high levels, it inhibits cell growth
and recombinant protein productivity.18

The gene regulation process in bacteria is used to respond to
the variations taking place in the metabolism or in the external
environment. Here, we take into account 466 E. coli Affymetrix
Antisense2 microarray expression profiles collected in various
media and conditions,19 such as low or high glucose, aerobic or
anaerobic environment, pH changes, antibiotics, and heat
shock. For the dynamical analysis of growth, we will consider
41 growth conditions, each of which has been sampled at four
time steps (164 microarray profiles in total).
Each expression profile is mapped to the E. coli model,20

which we have augmented with a map from gene expression
(GE) to constraints for metabolic fluxes. First, in order map a
gene expression profile to a gene set expression (GSE) profile, we
use recursively the following rules valid for the three basic cases
of gene set:

=

∧ =

∨ =

g g

g g g g

g g g g

single gene: GSE( ) GE( )

enzymatic complex: GSE( ) min{GE( ), GE( )}

isozymes: GSE( ) max{GE( ), GE( )}
1 2 1 2

1 2 1 2

(1)

Then, we solve the two-level maximization problem

where Vi
min and Vi

max are the default lower and upper bounds for
each flux, respectively, and vi, f, and g are n-dimensional
Boolean arrays that select the fluxes to be maximized (in this
article, only one flux is selected for each level of the
maximization problem). The gene set expression yi = GSEi
represents the “expression” of the ith reaction of the model.
The map from each gene set to the associated flux upper and

lower bounds is defined as

γ
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(and h(x) = γ/σi
2 if x = 1), where sgn(x − 1) = (x − 1)/|x − 1|;

γ is the weight for the variance σ2, which is the variance of the
gene set, computed from the variance of its genes using the
same rules (eq 1) used for the gene set expression (Figure 1-
M1).
The importance of a gene, and therefore the ability to change

the reaction flux of the corresponding reaction in the FBA
model, is inversely proportional to the variance of that gene
across all of the experimental conditions. The idea underlying
this assumption is that those genes whose expression is only
slightly varied across conditions must be regarded as key genes
for the organism.21 We adopt γ as a multiplicative factor for the
inverse of the variance of each gene, representing the weight
attributed to the variance as an indicator of the importance of a
gene. Here, γ was chosen as the value that causes the smallest
loss of information (quantified using a normalized root-mean-
square error, NRMSE) when using the Bayesian factor model.
However, if further experimental data is available (e.g., protein
abundance, translation rate, codon usage, or post-translational
modifications), then we expect this parameter to be varied
individually for each reaction.
The reasons for choosing this mathematical structure are as

follows. First, a recent model suggests a protein synthesis rate
that grows fast with increasing mRNA abundance but a
decreasing growth speed for high values of mRNA
abundance.22 Second, there is empirical evidence that
logarithmic maps are useful to map biological processes.23

Third, the approximation of this behavior with a logarithmic
function simplifies the task of avoiding the translation of
unrealistically high values of measured gene expression levels
into overly weak constraints. The correlation between gene
expression and metabolic phenotype is still a matter of debate,
but recent evidence suggests that protein abundance is mainly
determined by the transcript level.24,25 Therefore, we use the
logarithmic map only to set constraints, whereas we solve the
bilevel linear program (eq 2) to find the final flux distribution
under each condition. The solution of the bilevel problem is a
pair representing the maximum natural objective (biomass)
allowed by the constraints and the maximum second objective
(acetate) possible in the computed biomass-maximizing flux
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distribution. Each experimental condition is associated with a
gene expression array and therefore with a bilevel problem.

2. PATHWAY-BASED BAYESIAN FACTOR MODELING
Factor modeling is an unsupervised learning technique in a
family of latent variable models, assuming that high-dimen-
sional data are generated from the hidden lower-dimensional
factors that are shared across data samples. Specifically, matrix
factorization assumes that an observed R × C data matrix can
be explained by two low-rank matrices with the dimension of R
× P and P × C, where P ≪ R,C. Moreover, under Gaussian
Markov random field (GMRF) properties, assuming a Gaussian
distribution on the underlying factors in the matrix factorization
process can capture the dependency between each element in
P.
Here, we regard pathways as the latent factors underlying

bacterial flux responses. We assume that the observed flux rates
arise from specific combinations of pathways that are activated
by a stimulus. In particular, the values of a flux rate for each
reaction depends on the degrees of pathway activation and on
the association strength between that reaction and the activated
pathways. Having obtained the R × C flux rate matrix from the
bilevel FBA, where R and C are the number of reactions and
conditions, respectively, we use the Bayesian matrix factoriza-
tion modeling with GMRF to perform pathway analysis.
Specifically, we decompose the flux rate data matrix into two
low-rank matrices whose dimensions are R × P and P × C as
well as a P × P correlation matrix, where P is the number of
latent pathways. Note that, in general, we take a pathway into
account if it is associated with at least one reaction in R. Figure
1-M2 demonstrates the factor model graphically and
mathematically. On the basis of the rationale of matrix
factorization, the R × P matrix represents the association
strength between reaction fluxes and pathways, whereas the P ×
C matrix denotes the association strength between pathways
and conditions, suggesting degrees of pathway responsiveness.
In addition, the correlations between metabolic pathways are
denoted by the P × P matrix.
Formally, let R, C, and P be the number of reactions,

conditions, and pathways, respectively. The flux data matrix X
∈ R×C is decomposed into two matrices: X ∼ BS. The first
matrix B ∈ R×P denotes the membership strength of reactions
in each pathway. The second matrix S ∈ P×C corresponds to
the degree of pathway responsiveness specific to each
condition. We transform the predefined reaction-pathway
memberships of the E. coli model into the binary matrix K ∈
{0,1}R×P in order to guide the clustering of reactions into
pathways in B. On the basis of our assumption of pathway
cross-correlations, we model pathway dependencies by
assuming a Gaussian distribution on S with a zero mean and
a precision (inverse covariance) matrix Φ ∈ P×P from which
the correlations between pathways are computed.
On the basis of the GMRF framework, the off-diagonal

elements of the precision (inverse covariance) matrix can be
interpreted as the partial correlations between any two random
variables as follows.26 The zero pattern in the precision matrix
encodes the independence relations of two variables generated
by a Gaussian distribution conditioned on the other random
variables. Therefore, the precision matrix can be used to form a
pathway cross-correlation network, where nodes represent
individual pathways and neighboring nodes represent highly
correlated pathways. More precisely, since we assume that for
any given condition c, the pathway responsiveness vector sc ∼

normal(0,Φ−1) is randomly drawn from a P-dimensional
multivariate Gaussian with a zero mean μ and a precision
matrix Φ, we can form an undirected graph (Φ) = (V,E),
with vertices V corresponding to the random variables
(pathways) V1, V2, V3, ..., VP and edges E satisfying (Vi,Vj) ∈
E if and only if ϕij ≠ 0. If (i) = {j:(i,j) ∈ E} denotes the set of
neighboring nodes of s in the graph , then the independence
correlation of Vi⊥Vu |V i( ) holds for any node ∉u (i) that is
not a neighbor of Vi. Moreover, the correlation strength
between Vi and Vj is calculated as

ϕ

ϕ ϕ
| =corr V V V( , )i j ij

ij

ii jj
\

(4)

where the subscript “\ij” indicates all nodes except Vi and Vj.
Consequently, the correlation strength will range from zero to
one, indicating the weakest correlation (conditional independ-
ence) and strongest correlation, respectively. The remarkable
characteristic of the GMRF is that the conditional independ-
ence can be interpreted directly from the precision matrix.
More importantly, it can encode any arbitrary structure of a
graph.
Having observed the data matrix X, the goal is to make

inference on S, B, and Φ. Our interest for biological
interpretation is only on S and Φ, which indicate the degree
of pathway responsiveness to each condition and the cross-
correlations between pathways, respectively. At each time step,
we use the inferred cross-correlations as the underlying
mechanism of the E. coli system to predict the temporal
progression of pathway activation.
In order to infer all unknown variables, we apply a Bayesian

approach starting from the construction of a full probabilistic
model, in which all relevant entities (i.e., observed data, latent
variables, and nuisance variables) are treated as random
variables having uncertainties described by a probability
distribution. To avoid the optimization of the parameters, we
apply the Bayesian hierarchical modeling, in which each
parameter is given a prior distribution with a set of fixed
hyperparameters.
The model is mainly based on Gaussian distributions

containing two parameters, a mean and a precision (an inverse
variance). According to the matrix factorization method, X is
modeled with a mean BS and a precision τϵ (eqs 5 and 6).

∑= + ϵ = + ϵ

ϵ = ϵ ∈

=



b sx b s ;

random noise,

rc
p

P

rp pc r c
1

(5)

τϵ ∼ ϵ
−normal(0, )1

(6)

where br is the rth row of B and sc is the cth column of S.
Equations 7 and 8 illustrate that the latent variables B and S are
modeled with a zero mean because of the sparsity constraints.
While elements in B are assumed to be independently
distributed with a precision τB, elements in S are presumably
correlated within each column with a precision matrix Φ,
expressing the hypothesis of pathway cross-correlations.

τ
=

=

| =−

⎧
⎨⎪
⎩⎪

b
k

b k

0, if 0

normal( 0, ), if 1
rp

rp

rp B rp
1

(7)
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Φ∼ −s GMRF(0, )c
1

(8)

All parameters (τϵ, τB, and Φ) are given conjugate priors with
their own fixed hyperparameters (αϵ, βϵ, αB, βB, ν, Ψ), which
are a gamma distribution for τϵ and τB and a Wishart
distribution for Φ (eqs 9−11).

τ α β∼ϵ ϵ ϵgamma( , ) (9)

τ α β∼ gamma( , )B B B (10)

νΦ Ψ∼ Wishart( , ) (11)

The set of eqs 5−11 entirely specifies each model entity with its
probability distribution.5 The use of conjugate priors makes the
inference computable analytically.
Upon the model specification, inference of unknown

quantities can be made through the computation of the
posterior distribution, which is composed of the probability
conditioned on the observed data, known as likelihood, and its
prior. Due to the conjugacy, we apply a Gibbs sampling
algorithm, where each unknown variable is alternately sampled
until the convergence is satisfactory. In order to reduce
autocorrelation between samples, every 10 iterations we collect
the samples of the matrix S for the comparison between
conditions and over time and those of Φ for the analysis of
pathway cross-correlations.

3. RESULTS AND DISCUSSION
We first applied FBA modeling to map 466 gene expression
data profiles, plus 164 time-series data profiles, into 2583
reaction flux rates of the E. coli metabolic network, subject to
the maximization of acetate and biomass production. Next, we
performed Bayesian factor modeling on those reaction fluxes by
taking predefined reaction-pathway memberships as prior
knowledge to infer the responsiveness degree of the 37
pathways of the E. coli model.
3.1. Sensitivity and Mean-Square Error Analysis. On

the basis of a normalized root-mean-square error (NRMSE), as
shown in eq 12, we performed a convergence analysis
indicating how well the model fits the data. We compute the
error as

=
∑ − ×

−

x R C

x x

b s
NRMSE

( ) /( )r c rc r c,
2

max min (12)

where xmax and xmin are the highest and lowest values in X.
More specifically, the NRMSE indicates how much the

estimated flux rates inferred from the model assumption
according to eq 5 are deviated from the original flux rate data
matrix. In other words, it intuitively represents the information
loss we expect if we use this model in place of the actual flux
rates. The smaller the error is, the better the model fits the data.
Figure 2 shows that the error decreases to approximately
0.853% at the stationary state.
We also performed a sensitivity analysis on γ in order to

show the robustness of our approach by testing the
perturbation of the flux rates induced by various perturbations
of γ. Specifically, small changes of γ (1%) caused a very small
average perturbation of 0.0079 mmol h−1 gDW−1 of the flux
rates, 0.024 mmol h−1 gDW−1 for acetate, and 0.0009 h−1 for
biomass. A stronger (10%) perturbation of γ yields an average
perturbation of 0.0081 mmol h−1 gDW−1 of the flux rates,
0.2200 mmol h−1 gDW−1 for acetate, and 0.0085 h−1 for

biomass. Finally, a strong perturbation (1 order of magnitude)
resulted in an average change of 0.2385 mmol h−1 gDW−1 in
the flux rates, 2.0696 mmol h−1 gDW−1 for acetate, and 0.044
h−1 for biomass. We would like to remark that γ can be assigned
individually for each reaction where information on the
translation rate, codon usage, or post-translational modifica-
tions is available.

3.2. Bacterial Flux Responses and Pathway Cross-
Correlations. With the objective to maximize both biomass
and acetate production, as shown in Figure 3, the E. coli strains

grown under conditions with a 10 mmol h−1 gDW−1 of glucose
uptake rate produce more biomass and acetate than the strains
in lower glucose. Under aerobic conditions, the maximum
biomass is 2.31 h−1 with 39.52 mmol h−1 gDW−1 of acetate,
while the maximum acetate reached is 48.20 mmol h−1 gDW−1

with a biomass of 2.16 h−1. Under anaerobic conditions and low
glucose, the maximum biomass is 1.04 h−1 (with 4.36 mmol h−1

gDW−1 of acetate production). Under anaerobic conditions and
high glucose, the E. coli is able to produce only 1.36 h−1 of
biomass, with a maximum of 19.50 mmol h−1 gDW−1 of acetate.
The full table with the experimental conditions and the values
of acetate and biomass are in the Supporting Information. We
are interested in investigating the underlying mechanisms under
different oxygen conditions and glucose uptake rates (high/low

Figure 2. Normalized root-mean-square error (NRMSE) across the
iterations.

Figure 3. Through augmented FBA, all 466 gene expression profiles
are mapped to the acetate-biomass objective space. Each point
contains 2583 reaction flux rates, whereas only acetate and biomass are
shown, representing the objectives of the bilevel linear program. The
color bar shows the glucose uptake rate [mmol h−1 gDW−1].
Interestingly, the E. coli grown under some conditions with a 10
mmol h−1 gDW−1 of glucose uptake rate is able to produce more
biomass and acetate than the strains grown on higher glucose. The
pathway-based Bayesian analysis is performed on the flux rates in the
four conditions based on the two criteria of oxygen and glucose.
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glucose environments with a threshold of 10 mmol h−1

gDW−1).
The Bayesian factor modeling with GMRF allows us to

extract the behaviors of E. coli in response to a variety of
experimental conditions and cross-correlations between path-
ways. Since we assume that the pathway cross-correlations
represent a static, intrinsic property of E. coli, the model
computes the cross-correlations as a global factor that is shared
by individual conditions and over time. Figure 4 illustrates the
sparse network of inferred cross-correlations between metabolic
pathways. It is remarkable that the nucleotide pathway (PID:5)
acts as a central hub of the cross-correlation network and is
involved with multiple pathways. The strongest correlation is
the cross-correlation between the alanine and aspartate
metabolism pathway (PID:25) and the pivot pathway of
another small community pertaining to the valine, leucine, and
isoleucine metabolism (PID:17). A recent review of amino
acids and their functions shows that alanine is the primary
amino acid in gluconeogenesis and that valine can be used
directly to synthesize glutamine and alanine.27

Interestingly, there is a modest link between these two
clusters, PID:5 and PID:17, with correlation ≈0.15 (top 3% in
the correlation matrix) by a transcription factor called leucine-
responsive regulatory protein (Lrp).28 This link plays an
important role depending on the availability of oxygen over
time, which we will discuss in the next section. Table 1 shows
the average responsiveness degree of the most responsive
pathways to different oxygen and glucose conditions. While the
nucleotide pathway is important under anaerobic conditions on
low glucose, the valine, leucine, and isoleucine metabolism
pathway and the alanine and aspartate metabolism pathway
both exhibit a key role under aerobic conditions on high
glucose, highlighting a pathway cross-correlation between them
(Figure 4).
3.3. Flux Rate Progression and Temporal Pathway

Activation. Not only do the E. coli strains respond to the
environment differently from condition to condition within the
same time frame but also their temporal behaviors progress
over time in a different way. In order to perform a dynamical

analysis of pathway activation, we consider the gene expression
profiles of 41 time-course experiments after the exposure to
stimuli or under stress conditions.
Figure 5 shows the acetate secretion/assimilation and the

growth rate as a result of the metabolic regulation system of E.
coli in response to the changing environment. We also compare
the Euclidean distance covered by each of the 41 conditions
from the start to the end of the observations (four time steps).
The fluctuations in acetate production depend on the balance
between pyruvate fermentation to acetate and Krebs cycle.
Interestingly, the most remarkable fluctuations are those caused
by the presence of ampicillin, norfloxacin, and spectinomycin,
antibiotics used to treat a number of bacterial infections. This
result confirms that under specific conditions some antibiotics
can have a high impact on the metabolism and physiology of E.
coli, whereas others (e.g., kanamycin) have no effect (for
instance, due to the development of antimicrobial resistance).
These metabolic transitions confirm well-known experimental
results on the acetate switch during growth under different
conditions and on the inverse relation between growth rate and
acetate secretion.29,30 The global response of the biomass to a
changing environment can be explained also as a separated
response of two subpopulations reacting at different speeds to
the environmental change.31

Figure 4. Pathway correlation matrix derived from Φ, an output of the Bayesian factor modeling. On the y axis, we report the pathway identifiers
(PID) that correspond to their pathway names labeled on the diagonal. The color bar shows the correlation between pathways computed with the
Bayesian factor modeling. These values suggest the strength of pathway cross-correlations underlying the bacterial response through flux rates in
both steady-state and time-course experiments.

Table 1. Average Responsiveness of the Most Responsive
Pathways under Aerobic and Anaerobic Conditions of High
and Low Glucosea

high glucose low glucose

PID pathway name aerobic anaerobic aerobic anaerobic

5 Nucleotide salvage 0.0865 0.0965 0.1366 0.1714
17 Valine, leucine, and

isoleucine metabolism
0.2219 0.2147 0.1974 0.1590

25 Alanine and aspartate
metabolism

0.1544 0.1487 0.1285 0.1076

aPID:5 is important under anaerobic conditions on low glucose,
whereas PID:17 and PID:25 both exhibit a key role under aerobic
conditions on high glucose, highlighting a pathway cross-correlation
between them.
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Pathway activation shows an apparent progress over time
under the aerobic condition shown in Figure 6a, whereas the
anaerobic activation is more static (Figure 6b). As expected, the
nucleotide salvage pathway (PID:5) highly responds to the
environment where oxygen was present, whereas the valine,
leucine, and isoleucine metabolism pathway (PID:17) and
alanine and aspartate metabolism (PID:25) are less active. In
contrast, all of these pathways are active in response to low-
oxygen environments and maintain their activity over time.
These results support the inferred cross-correlation between
two communities of PID:5 and PID:17 linked by the
transcription factor called leucine-responsive regulatory protein
(Lrp),28 which is designated as a global transcription factor in
E. coli.32 A recent experiment confirmed that the activity of Lrp
decreases as aerobiosis increases.33 This may explain the
mechanism of the inactive PID:17 after the exposure to oxygen.
In addition, we observed that the cysteine metabolism

pathway (PID:21) was activated under the anaerobic condition
and lasted for three time steps before it was deactivated in the
last time point. The case of cysteine has long been studied in
bacteria: although cysteine residues of FNR, another global
transcription factor in E. coli,32 are alkylated with iodoacetate
under permeabilized aerobic or anaerobic conditions, the
process takes 50 min in anaerobic bacteria and 6 min in

aerobic bacteria.34 Thus, we could not observe that the cysteine
metabolism was active at any time steps after 6 min in aerobic
bacteria, but we could observe the activation of the cysteine
pathway at the first three time frames within the first 50 min
under anaerobic conditions.
Different levels of glucose uptake also change pathway

activities over time, as shown in Figure 6c,d. At the early stage
of glucose prevalence, the methylglyoxal metabolism pathway
(PID:12) was activated, unlike when the bacterium was starved
of glucose. Methylglyoxal (MG) is usually synthesized under
conditions with low phosphate and high dihydroxyacetone
phosphate (DHAP), an environment that occurs most
frequently under high-glucose settings.35 A recent experiment
confirmed that the increase of glucose uptake rates results in
the temporary excretion of methylglyoxal synthase (MgsA).36,37

As MG accumulation will lead to cell death, E. coli requires a
mechanism for MG degradation.37 The detoxification of
methylglyoxal includes the conversion MG to S-lactoyl
glutathione and then to D-lactate by glyoxalase enzymes I and
II.37 This procedure has also been presented to be the
predominant MG detoxification system in E. coli.37,38 This
exposition also endorses our discovery about the modest
correlation (≈0.05) between the methylglyoxal metabolism
pathway (PID:12) and the glyoxalase metabolism pathway

Figure 5. Acetate production/assimilation and biomass produced by Escherichia coli under 41 different environmental conditions. We used a set of
164 expression arrays consisting of 41 conditions with four measurements each. Growth conditions include pH changes, antibiotics, genetic
perturbations, heat shock, different growth media, carbon source, and oxygen and glucose concentrations (see Supporting Information for further
details). Some conditions show quick metabolic rearrangement during growth, whereas under other conditions, the bacterium metabolism remains
stable. In the right panel, we show the Euclidean distance covered by each of the 41 conditions in the biomass-acetate space during the four time
steps. The conditions whose bars are not shown have a negligible (less than 10−9) distance covered in the acetate-biomass space during the four time
steps.
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(PID:35), which appears at the top 10% of the inferred sparse
cross-correlation network.
3.4. Conclusions. As a result of many recent research

efforts to elucidate the relation between genotype and
phenotype, we currently have models for a better under-
standing of the individual components, but we arguably have a
less clear picture of the interactions between the biological
components that result in a given phenotype.10 We still have,
moreover, limited knowledge about how to use these models to
predict a phenotypic response to a changing environmental
condition, due to the lack of comprehensive data across
different conditions and accurate training processes performed
on the models.39 Probabilistic, sometimes rare interactions
between molecules and metabolic activation depend on external
conditions and may change over time. These interactions and
active components give rise to important effects in the bacterial
physiology, such as nonlinear activation of toggle switches or
master regulators.
When a particular bacterial phenotype has to be achieved,

some pathways are required to respond more than others. Our
idea is to analyze a compendium of experimental conditions to
investigate the combinations of pathway activation that will
allow the bacterium to mimic the behavior of the desired
phenotype. In order to map the environmental changes to the
E. coli, we started from the most recent genome-scale metabolic
reconstruction,20 and we used bilevel flux-balance analysis to
modify the constraints on the metabolic fluxes according to the
gene expression profile associated with each condition. Each
environmental condition is converted into a flux profile and
mapped to a single point in a bidimensional objective space,

therefore translating dynamic genetic activities into dynamic
reactions fluxes. (In this article, we focused on the acetate-
biomass space, but the methodology is readily applicable to any
multidimensional space by extending bilevel FBA to many-level
FBA.)
At this step, thousands of reaction flux rates for each

experimental condition would need a lot of expertise and
manual work for their interpretation. We therefore summarized
the reaction fluxes by developing a Bayesian factor model able
to identify the pathway responsiveness, representing the
responsive degree of each pathway under each environmental
condition. Our method is also able to achieve a systematic
prediction of E. coli metabolic pathway responses to time-
varying signals. The Bayesian factor model simultaneously
elucidates all of the pathway−pathway interactions (pathway
cross-correlations), which are also the underlying process
behind the pathway activation at each time step. While the
activation of some metabolic pathways is kept at the same level,
other pathways fluctuate as part of the global response to the
fluctuating environment.
While the cross-correlations are considered an intrinsic

property of the E. coli metabolic network, and thus being
computed globally, the degrees of responsiveness depend on
the particular environmental conditions at each time step. This
characterizes the temporal progression of pathway activation,
throughout the time series, in response to given stimuli. Instead
of considering a single condition at a time, performing the
analysis across all conditions provides insights into pathway
connectivity and pathway islands that rarely coactivate with
others. Pathway activation profiles allow different conditions in

Figure 6. Pathway responsiveness in four conditions: (a) aerobic, (b) anaerobic, (c) high glucose, and (d) low glucose at four time steps. We
performed the Bayesian factor modeling on the time-course flux rate responses sharing the same underlying cross-correlations. As a result, pathway
responsiveness indicates how much a pathway is likely to be responsive to a given condition at a given time. The pathway responsiveness plots
provide us the comprehensive interpretation of the E. coli progression of phenotypic behavior in response to each condition, as shown in the plots at
the bottom. Specifically, conditions with large variations in the biomass and acetate production are also likely to cause large variation in the pathway
responsiveness.
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which the E. coli responds similarly to be clustered. This is also
advantageous for discovering alternative antibiotic treatments
by replacing stimuli with different chemicals.40 Many
interesting applications can be implemented from the particular
pathway cross-correlations predicted from a set of environ-
mental experiments. For instance, they facilitate the prediction
of bacterial behaviors in specific situations involving reciprocal
action or influence between different organisms, e.g., the
interaction between bacteria and plants in mycorrhiza or sepsis
and health conditions (e.g., gut microbiota). Our results can
also help to shed light on why different conditions can show the
same response in a given multiobjective output space. Finally,
assessing the pathway correlations with our framework can
indicate an operating distance between pathways, thus enhancing
the current knowledge of the metabolic network and providing
foundations of methodological value for analyzing multiomic
data.
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